martes, 13 de agosto de 2013

Aldehidos y cetonas

PRESENTADO POR: Wilson Ferley Sanchez Florez
GRADO: 11-3 T


ALDEHIDOS


Los aldehídos constituyen una clase de sustancias orgánicas que presentan el grupo funcional carbonilo dentro de la estructura de la molécula, acoplado a por lo menos un átomo de hidrógeno. Pueden ser alifáticos o aromáticos en dependencia de si el grupo funcional se acopla a un radical alquilo (R) o arilo (Ar) respectivamente, por el otro enlace disponible.




                                               Propiedades Físicas 
Los primeros aldehídos de la clase presentan un olor picante y penetrante, fácilmente distinguible por los seres humanos.
El punto de ebullición de los aldehídos es en general, mas alto que el de los hidrocarburos de peso molecular comparable; mientras que sucede lo contrario para el caso de los alcoholes, así, el acetaldehído con un peso molecular 44 tiene un punto de ebullición de 21°C, mientras que el etanol de peso 46 hierve a 78°C.
La solubilidad en agua de los aldehídos depende de la longitud de la cadena, hasta 5 átomos de carbono tienen una solubilidad significativa como sucede en los alcoholes, ácidos carboxílicos y éteres. A partir de 5 átomos la insolubilidad típica de la cadena de hidrocarburos que forma parte de la estructura comienza a ser dominante y la solubilidad cae bruscamente.
El metanal es un gas de olor penetrante que al ser aspirado produce irritación y lagrimeo. El etanal tiene un agradable olor a frutas. A partir del etanal y hasta el de doce átomos de carbono son líquidos. Los restantes son sólidos.
Todos los aldehídos son menos densos que el agua. Los primeros de la serie son solubles en agua pero la solubilidad disminuye a medida que aumenta el número de átomos de carbono. Hierven a menor temperatura que los respectivos alcoholes.
Punto de Ebullición: los puntos de ebullición de los aldehídos y cetonas son mayores que el de los alcanos del mismo peso molecular, pero menores que el de los alcoholes y ácidos carboxílicos comparables. Esto se debe a la formación de dipolos y a la ausencia de formación de puentes de hidrógeno intramoleculares en éstos compuestos.
(Constantes físicas de algunas aldehídos)

Los aldehídos pueden ser alifáticos o aromáticos en dependencia de si el grupo funcional se acopla a un radical alquilo (R) o arilo (Ar) respectivamente, por el otro enlace disponible.

El primer miembro de la clase de los aldehídos alifáticos es el formaldehído (CH2O), y es el único que posee dos átomos de carbono acoplados al grupo carbonilo. Esta diferencia estructural hace que tenga ciertas características que lo distinguen del resto de la clase. El segundo miembro se llama acetaldehído (CH3CHO) de estructura.
En los aldehídos aromáticos el primer miembro es el benzaldehído, con un anillo bencénico acoplado al grupo carbonilo.
                                         Propiedades químicas
Debido a la diferencia de electronegatividad entre el oxígeno y el hidrógeno del grupo, se produce una polarización lo que los vuelve muy reactivos.
Se oxidan con facilidad transformándose en los ácidos carboxílicos respectivos. El carácter reductor de los aldehídos se verifica con la reacción de Tollens (nitrato de plata amoniacal); los productos de esta reacción son el ácido respectivo y un vistoso espejo de plata que permite identificar al grupo.
El grupo carbonilo de los aldehídos en fuertemente reactivo y participa en una amplia variedad de importantes transformaciones, que hacen de la química de los aldehídos un tema extenso y complejo. Aqui solo no limitaremos a tratar someramente algunas de sus reacciones características.

Reducción a alcoholes

Por contacto con hidrógeno en presencia de ciertos catalizadores el doble enlace carbono - oxígeno del grupo carbonilo se rompe y un átomo de hidrógeno se acopla a uno de los enlaces para formar el grupo hidroxilo típico de los alcoholes.

Reducción a hidrocarburos

Los aldehídos pueden ser reducidos a hidrocarburos al interactuar con ciertos reactivos y en presencia de catalizadores. En la reducción Wolff-Kishner el acetaldehído se trata con hidrazina como agente reductor y etóxido de sodio como catalizador. El resultado de la reacción produce una mezcla de etano, agua y nitrógeno.

Polimerización

Los primeros aldehídos de la clase tienen un marcada tendencia a polimerizar. El formaldehido por ejemplo, polimeriza de forma espontánea a temperatura ligeramente superior a la de congelación (-92°C).
Del mismo modo, cuando se evapora una solución al 37% de formaldehido en agua que contenga de 10 a 15% de metanol se produce un polímero sólido que se conoce como parafolmaldehído. Si se calienta el parafolmaldehído se vuleve a producir el formaldehido en forma gaseosa.
También se forman polímeros cuando las soluciones de formaldehido o acetaldehído se acidifican ligeramente con ácido sulfúrico.

Reacciones de adición

Los aldehídos también sufren reacciones de adición, en las cuales se rompe la estructura molecular del aldehído y el agente reaccionante se agrega a la molécula para la formación de un nuevo compuesto.
Los aldehídos se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica.
Reacciones de adición nucleofílica: Estas reacciones se producen frente al (reactivo de Grignard), para dar origen a un oxihaluro de alquil-magnesio que al ser tratado con agua da origen a un alcohol. El metanal forma alcoholes primarios y los demás aldehídos forman alcoholes secundarios.
Otras reacciones de adición nucleofílica pueden producirse con el ácido cianhídrico, el sulfito ácido de sodio, la hidroxilamina, hidracina, semicarbacida, fenilhidracina y con el 2,4 dinitrofenilhidracina, para dar origen a diferentes compuestos químicos.
Los aldehídos también pueden dar origen a otros compuestos mediante reacciones de sustitución halogenada, al reaccionar con los halógenos sustituyen uno o varios hidrógenos del carbono unido al carbonilo.Este método permite obtener la monobromoactona que es un poderoso gas lacrimógeno.
Reacciones de condensación aldólica: En esta reacción se produce la unión de dos aldehídos o dos cetonas en presencia de una solución de NaOH formando un polímero, denominado aldol.
Reacciones de oxidación: Los aldehídos se oxidan con facilidad frente a oxidantes débiles produciendo ácidos. Mientras que las cetonas sólo se oxidan ante oxidantes muy enérgicos que puedan romper sus cadenas carbonadas. Es así que las reacciones de oxidación permiten diferenciar los aldehídos de las cetonas en el Laboratorio. Síntesis y obtención de aldehídos y cetonas alifáticas:
La hidratación de alquinos en presencia de ácido sulfúrico en solución acuosa y sulfato mercúrico permite obtener aldehídos. 
Obtención: se preparan básicamente por oxidación suave de alcoholes primarios.
Usos: el aldehído más utilizado es el metanal o formaldehido. En solución acuosa al 40 % se lo conoce con el nombre de formol. Se utiliza en la industria para conservar maderas, cueros y en taxidermia. Debido a la posibilidad de polimerizarse se utiliza en la industria de plásticos como la baquelita.
El etanal se utiliza en la fabricación de espejos (reacción de Tollens y en la preparación de ácido acético.
El benzaldehído se emplea en la preparación de medicamentos, colorantes y en la industria de los perfumes.

USOS





Los usos principales de los aldehídos son:
  • La fabricación de resinas 
  • Plásticos
  • solventes
  • Pinturas
  • Perfumes
  • Esencias 
Los aldehídos están presentes en numerosos productos naturales y grandes variedades deellos son de la propia vida cotidiana. Laglucosapor ejemplo existe en una forma abiertaque presenta un grupo aldehído.
El acetaldehídoformado como intermedio en lametabolización se cree responsable en gran medida de los síntomas de la resaca tras laingesta de bebidas alcohólicas.
El formaldehídoes un conservante que se encuentra en algunas composiciones de productos cosméticos
Sin embargo esta aplicación debe ser vista con cautela ya que enexperimentos con animales el compuesto ha demostrado un poder cancerígeno. También seutiliza en la fabricación de numerosos compuestos químicos como la baquelita, lamelaminaetc.
Los aldehídos están ampliamente presentes en la naturaleza. El importante carbohidrato glucosa,es un
polihidroxialdehíd La vanillina saborizante principal de la vainilla es otro ejemplo dealdehído natural.Probablemente desde el punto de vista industrial el mas importante de los aldehídos sea elformaldehído, un gas de olor picante y medianamente tóxico, que se usa en grandes cantidadespara la producción de plásticos termoestables como la bakelita.La solución acuosa de formaldehído se conoce como formol o formalina y se usa ampliametecomo desinfectante, en la industria textil y como preservador de tejidos a la descomposición.





riesgos para la salud: aldehidos 

La mayor parte de los aldehídos pueden causar irritación de la piel, los ojos y el sistema respiratorio, siendo este efecto más pronunciado en los miembros inferiores de una serie, en los miembros con la cadena alifática insaturada y en los miem- bros con sustitución halógena. Los aldehídos pueden tener un efecto anestésico, pero las propiedades irritantes de algunos de ellos posiblemente obligen al trabajador a limitar la exposición antes de que ésta sea suficiente como para que se manifiesten los efectos anestésicos. El efecto irritante en las mucosas puede estar relacionado con el efecto cilioestático que inhibe el movimiento de los cilios que tapizan el tracto respiratorio con funciones esencialmente de limpieza. El grado de toxicidad varía mucho en esta familia. Algunos aldehídos aromáticos y ciertos aldehídos alifáticos se metabolizan rápidamente y no producen efectos adversos, pudiendo utilizarse sin riesgos como aromas alimentarios. No obstante, otros miembros de la familia son cancerígenos conocidos o sospechosos y exigen la adopción de medidas de precaución siempre que exista posibilidad de contacto con ellos. Algunos son mutágenos químicos y otros, alergenos. También tienen la capacidad de producir un efecto hipnótico. En el texto siguiente y en las tablas adjuntas se facilitan más datos sobre miembros específicos de la familia.

                          COMPUESTOS MAS RPRESENTATIVOS


















                                           BIBLIOGRAFIA



                      CETONAS

Las cetonas tienen el mismo grupo carbonilo que los aldehídos pero en un carbono secundario lo que modifica su reactividad. Se nombran con la terminación ONA. La primera de la serie es la propanona que se conoce con el nombre común de acetona.

Estado natural: la acetona se halla en muy pequeñas proporciones en la sangre. La butanona en el aceite de ananá y la octanona en el queso Roquefort.

Propiedades físicas

Las primeras diez son líquidas y a partir del carbono 11 son sólidas. Son solubles en éter, alcohol y cloroformo; la acetona es soluble en agua en cualquier proporción pero las siguientes son menos solubles. Las primeras tienen olor agradable que a medida que aumenta el número de átomos de carbono se vuelve desagradable. Las superiores son inodoras. Todas las cetonas alifáticas son menos densas que el agua.
La acetona es muy buen disolvente de esmaltes, yodo y aceites.

Propiedades químicas

Al hallarse el grupo carbonilo en un carbono secundario son menos reactivas que los aldehídos. Solo pueden ser oxidadas por oxidantes fuertes como el permanganato de potasio dando como productos dos ácidos con menor número de átomos de carbono. Por reducción dan alcoholes secundarios.
No reaccionan con el reactivo de Tollens para dar el espejo de plata como los aldehídos, lo que se utiliza para diferenciarlos. Tampoco reaccionan con los reactivos de Fehling y Schiff.

Reacciones de adición
Adición de Hidrógeno:
Al igual que los aldehídos, las cetonas pueden adicionar átomos de hidrógeno en presencia de catalizadores.





Oxidación: Los aldehídos se oxidan con facilidad. En presencia de un oxidante fuerte y calor, se rompe la cadena a la altura del grupo funcional y se forman dos moléculas de ácido.


Las cetonas como los aldehídos presentan un fenómeno que se denomina tautomería. Básicamente es una transformación intramolecular que experimentan solo algunas sustancias. En este caso se llama tautomería cetoenólica.




Quinonas:

Son un tipo especial de cetonas que derivan del benceno. Dos átomos de hidrógeno son reemplazados por dos de oxígeno. En el anillo quedan dos dobles enlaces.







usos de las cetonas

Las cetonas son usadas en varios aspectos de la vida diaria, pero la más común y usada es la ACETONA,
lo creamos o no, las cetonas se encuentra en una gran variedad de materiales en la que nosotros no nos damos cuenta ni si quiera de que estamos sobre ellas.
Algunos ejemplos de los usos de las cetonas son las siguientes:

.- Fibras Sintéticas (Mayormente utilizada en el interior de los automóviles de gama alta)

.-Solventes Industriales (Como el Thiner y la ACETONA)
-Aditivos para plásticos (Thiner)
.-Fabricación de catalizadores
.-Fabricación de saborizantes y fragancias
.-Síntesis de medicamentos
.-Síntesis de vitaminas
-Aplicación en cosméticos
.Adhesivos en base de poliuretano







                      BENEFICIOS Y RIESGOS PARA LA SALUD
1) La penetración en el organismo se realiza de forma fundamental a través de la VIA RESPIRATORIA Y CUTANEA.

2) Manifestaciones clínicas generales de las cetonas:
a) IRRITANTE DE LA MUCOSA OCULAR Y VIAS RESPIRATORIAS
b) DERMATITIS IRRITATIVA. EFECTO DEPRESOR DEL S.N.C.
c) TRASTORNOS DIGESTIVOS. NEUROPATIA PERIFERICA.

3) Efectos agudos de las cetonas:
a) IRRITACION DE LAS VIAS RESPIRATORIAS
b) SINTOMÁS ANESTESICOS (DESORIENTACION, DEPRESION, PERDIDA DE CONOCIMIENTO, CEFALEAS, MAREOS, VOMITOS)

4) Efectos crónicos de las cetonas: DERMATITIS (PIEL SECA AGRIETADA Y ERITEMATOSA)



                         COMPUESTOS MAS REPRESENTATIVOS



Cetonas alifáticas


Resultan de la oxidación moderada de los alcoholes secundarios. Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica, siempre y cuando exista un átomo covalente con otro.
Isomería
Las cetonas son isómeros de los aldehídos de igual número de carbono.
Las cetonas de más de cuatro carbonos presentan isomería de posición. (En casos específicos)
Las cetonas presentan tautomería ceto-enólica.


Cetonas aromáticas
Se destacan las quinonas, derivadas del benceno y tolueno.

Cetonas mixtas
Cuando el grupo carbonil se acopla a un radical arilico y un alquilico, como el fenilmetilbutanona.
Para nombrar los cetonas tenemos dos alternativas:
El nombre del hidrocarburo del que procede terminado en -ona. Como sustituyente debe emplearse el prefijo oxo-.
Citar los dos radicales que están unidos al grupo Carbonilo por orden alfabético y a continuación la palabra cetona.





                                               BIBLIOGRAFIA


No hay comentarios:

Publicar un comentario